斜橋設計の手引き

平成2年4月

『作成は当時のものであり、現段階において適切に見直したものではないことをご了承ください。』

株式会社 プレストレスト・コンクリート建設業協会

東京都新宿区津久戸町4番6号（第3都ビル）
〒162 電話番号 03(260)2535代
FAX 03(260)2518
目次

1. はじめに .. 1
2. 設計上の基本 2
3. 設計計算例 8
4. 設計例 ... 24
5. 施工例図集 .. 28

資料－1 構造解析一覧表 31
資料－2 断面力の比較図 33
資料－3 断面力比較表 41
資料－4 参考文献 45
1. はじめに

近年、道路の新設、改良にあたり橋梁は、道路の線形に従い河川、道路あるいは鉄道等に対して斜めに架かる場合が多くなってきています。

斜橋は、一般にその力学的挙動が複雑であるため、計算技術、施工技術の大幅な進歩に伴ない、比較的容易にしかも正確な対応が可能になってきました。

現在、標準設計では、斜角が60°（プレテンション１桁は75°）まで集録されていますが、これを外れた場合の対応についての統一的な考え方は、今のところ確立されておりません。

そこで、当協会では今回、斜角が45°～70°の丁桁橋について、様々な条件に対しての試算を行ない、「このようにすれば標準設計をそのまま適用できる」という条件を探り出した、ここに「強い斜角（45°～70°）を有する橋梁の設計の手引き」として編集いたしました。内容的には、まだ不備な点も多いくれますが、設計資料として御参考に供することにした次第であります。

今後、更に一層充実したものにしたいと存じますので、何とぞ御指導、御鞭撻を賜りますようお願い申し上げます。
2. 設計上の基本

2-1 概要

橋梁を設計する場合、それが強い斜角を有する場合には、設計者により考え方が異なりその扱いも複雑なことからPC橋は敬遠される傾向があった。

そこで当協会では、このたび設計に関する手引きを作成し、考え方の統一を図ることにした。

今回は、ボストンションT桁およびプレテンションT桁を対象として、幅員、斜角、ネジリ剛度、パネ定数の取り合わせを種々変えて、断面力を試算した。そして、これらの結果を基にして、設計上の基本的な考え方を明らかにし、あわせてボストンションT桁についての試設計を行なった。

なお、本手引きは斜角45°〜70°の範囲について設計上の統一的な考え方を示したもので、ここに規定してない事項は道路規示方書（Ⅲコンクリート橋梁）によるものとする。
2-2 設計

1) 適用の範囲

本手引きは、斜角が45°～70°の範囲にあるプレストレスコンクリートT型の橋の設計方法について示すものである。

標準設計に示される幅員構成、主桁断面を対象にして検討したものであり、特殊な条件の場合は適用外とする。

2) 設計一般

(1) 橫げたは支承線に対して平行に設けることを標準とする。
(2) 設計荷重作用時のねじりに対する検討は、せん断力とねじりモーメントを合計して求めた斜引張応力度が、許容値を超えないことを確かめるものとする。
(3) 終局荷重作用時のねじりに対する検討は、省略してよい。

(1) 道路構造方書（Ⅲコンクリート構物）7.2設計一般（1）、（2）の説明から斜角45°以上の横げたは全て支承線に平行とした。
(2) 設計荷重作用時には、有害なひびわれが生じないよう斜引張応力度を制限した。
(3) 部材に発生するねじりは“変形適合ねじり”であることから、終局荷重作用時のねじりに対する検討を省略することにした。
3）構造解析

(1) けたの断面力は、格子構造理論により算出する。
(2) 格子構造では、部材のねじり剛性を考慮して解析することを標準とする。
 この場合の終局荷重作用時の曲げモーメントとせん断力は、5％程度割増した値を使用してよい。
(3) ゴム支承を用いる場合も、格子構造における支点条件は、剛支承として解析してよい。

(2) 道路構示方書（Ⅲコンクリート構築）の2．4．2の解説にあるように設計荷重作用時の斜ひびわれ発生を防止するためである。
 終局荷重作用時には、主げた、横げたのねじり剛性を無視した解析による断面力によって検討を行うのが望ましいが、今回の検討結果（資料2，3）ではその差は、5%に満たない。また、この値を用いて主げたの応力照査を行ったところ、標準仕様の内容を変更するほど支配的な値とはならない。本手引きの適用範囲では、5％の割り増しを考えれば十分安全である。
(3) 資料2，3で明らかのように、支承のパネ評価による断面力差は僅少であり、部材の設計に際しては支配的とならないので剛支点として解析してよいこととした。
 ただし特別な場合（負反力の発生する場合、幅員と支間の比が大きい場合等）はこの限りではない。
4）構造細目

(1) 主げたと模げたの接合面は、ズレが生じない構造とする。
(2) 横締め定着部の処理は、斜角が小さい場合ズレが生じないよう、切欠きを設けて定着することが望ましい。
(3) 床版横締め鋼材の配置は、斜角が90° ～90° の場合は支承線と平行、60° 未満のものは主げたに対して直角に配置することを標準とする。

(1) 一般に部材の接合面は直角にするのが望ましいが、処理方法として次のような例がある。

Ⅰ）ボストテンションTけたの場合

Ⅱ）プレテンションTけたの場合

横げた
横締鋼材
プレキャストけた

プレキャストけた

差し縫する。

シーせなどで孔を設ける。
（2）緊張方向と支圧面が斜面を有する場合、支圧面には水平分力が発生する。
鋼材とコンクリートの摩擦係数を0.5と仮定すると、斜面60°程度では
横すべりの可能性があり、施工上その対策を講じておく必要がある。

定着部の処理方法として以下のような例がある。

① 切欠きを設け、標準
アンカープレートを使用する。
② 異形アンカープレート+ねじ管
を使用する。
③ 切欠きを設け、異形
アンカープレートを使用する。

使用例：
ポストテンションTけた全般 ・・・・・・・・・・・ ①
プレテンションTけたの上床版 ・・・・・・・・・・・ ①
プレテンションTけたの横桁 ・・・・・・・・・・・ ②，③
(3) 斜角60°未満の場合銳角部付近では鋼材長が短くなるので、プレストレッスのロスの少ないもの（例えばPC鋼棒）を選定する必要がある。
また、配置の方法として放射状配置も考えられる。

i) 60°以上の例

ii) 60°未満の例

直角配置の例 放射状配置の例
3．設計計算例

3－1．設計条件

1) 種 別 プレストレストコンクリート道路橋
2) 形 式 ポストテンション方式単純T形
3) 活荷重 TL-20
4) 衝撃係数
 L荷重 i = 10 / (25 + L)
 T荷重 i = 20 / (50 + L)
5) 橋 長 30800 (m)
6) け 長 30900 (m)
7) 支 間 30000 (m)
8) 総 建 現 8200 (m)
 車 道 7000 (m)
 地 層 左 0600 (m) 右 0600 (m)
9) 斜 角 左 45° 0' 0"
10) 破壊安全度 130×Wd + 250×Wd 又は170×(Wd + Wd)
11) 材料の品質及び許容応力度
 (1) コンクリート (kg/cm²)
<table>
<thead>
<tr>
<th>(主げた)</th>
<th>(場所打ち)</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計基準強度 (設計荷重作用時)</td>
<td>340</td>
</tr>
<tr>
<td>(導入時)</td>
<td>400</td>
</tr>
<tr>
<td>許容曲げ圧縮応力度 (設計荷重作用時)</td>
<td>110</td>
</tr>
<tr>
<td>(導入時)</td>
<td>180</td>
</tr>
<tr>
<td>許容曲げ引張応力度 (設計荷重作用時)</td>
<td>-15</td>
</tr>
<tr>
<td>(導入時)</td>
<td>-15</td>
</tr>
<tr>
<td>許容せん断応力度 (設計荷重作用時)</td>
<td>5.5</td>
</tr>
<tr>
<td>許容斜引張応力度 (設計荷重作用時)</td>
<td>-10</td>
</tr>
</tbody>
</table>
(2) PC鋼材

<table>
<thead>
<tr>
<th>種類</th>
<th>主げた</th>
<th>横げた</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>SWPR7A</td>
<td>SWPR7A</td>
</tr>
<tr>
<td></td>
<td>12T12.4</td>
<td>IT19.3</td>
</tr>
<tr>
<td>2) 引張強度</td>
<td>17500</td>
<td>19000</td>
</tr>
<tr>
<td>3) 降伏点応力度</td>
<td>15000</td>
<td>16000</td>
</tr>
<tr>
<td>4) 許容引張応力度（設計荷重時）</td>
<td>10500</td>
<td>11400</td>
</tr>
<tr>
<td></td>
<td>12250</td>
<td>13300</td>
</tr>
<tr>
<td></td>
<td>13500</td>
<td>14400</td>
</tr>
</tbody>
</table>

(3) 鋼筋

<table>
<thead>
<tr>
<th>種類</th>
<th>引張側</th>
<th>テーブル</th>
<th>床版</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>SD30</td>
<td>SD30</td>
<td>SD30</td>
</tr>
<tr>
<td>2) 許容引張応力度</td>
<td>1800</td>
<td>3000</td>
<td>1400</td>
</tr>
</tbody>
</table>
3-2 構造寸法図

側面図
桁長 30900

平面図
桁長 30900

45° 00' 00"
3x100=300
600
8200
15450
5000
10000
450
600
7000
880
880
880
880
880
3-3. 主桁の設計

1) 荷重および曲げ応力度の計算

<table>
<thead>
<tr>
<th>荷 重</th>
<th>曲げモーメント (t-m)</th>
<th>主桁上縁 (kg/cm²)</th>
<th>主桁下縁 (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>主桁自重</td>
<td>194.31</td>
<td>61.3</td>
<td>-107.3</td>
</tr>
<tr>
<td>場所打ち</td>
<td>498.3</td>
<td>15.1</td>
<td>-24.2</td>
</tr>
<tr>
<td>横面荷重</td>
<td>797.9</td>
<td>21.2</td>
<td>-37.9</td>
</tr>
<tr>
<td>活荷重</td>
<td>1550.8</td>
<td>41.3</td>
<td>-73.6</td>
</tr>
<tr>
<td>死荷重合計</td>
<td>3239.4</td>
<td>97.6</td>
<td>-169.4</td>
</tr>
<tr>
<td>活荷重合計</td>
<td>1550.8</td>
<td>41.3</td>
<td>-73.6</td>
</tr>
<tr>
<td>合計</td>
<td>4790.2</td>
<td>138.9</td>
<td>-243.1</td>
</tr>
</tbody>
</table>

断面力は、曲げ剛性、ねじり剛性を考慮した格子理論により算出した。

2) プレスストレスの計算

(1) 導入直後のプレストレス

PC鋼材の種類 SWPR7A 12T12.4

\[\sigma_{pt} = 10540 \text{ (kg/cm}^2\text{)} \]

\[\Phi Pt = \sigma_{pt} \times A_p \]

\[= 10540 \times 11.148 = 117500 \text{ (kg)} \]

\[Pt = \Phi Pt \times N \]

\[= 117500 \times 4 = 470000 \text{ (kg)} \]

\[\sigma_{ctu} = \frac{Pt}{Ao} + \frac{Pt \times \varepsilon_p}{Z_{uo}} \]

\[= \frac{470000}{6642} + \frac{470000 \times (-8.33)}{317113} = -52.8 \text{ (kg/cm}^2\text{)} \]

(2) 有効プレストレス

\[\sigma_{ceu} = \sigma_{ctu} \times \eta = -52.8 \times 0.802 = -42.3 \text{ (kg/cm}^2\text{)} \]

\[\sigma_{cei} = \sigma_{cti} \times \eta = 287.1 \times 2.303 = 664.2 \text{ (kg/cm}^2\text{)} \]

ここで、 \(\eta \) : 有効係数
3) 合成応力度
(1) プレストレス導入直後

\[
\frac{\sigma_{cu}}{\sigma_{cl}} = \frac{\sigma_{cdiu}}{\sigma_{cdi} \cdot \sigma_{ctl}}
\]

\[
= \frac{6.13}{5.28} \cdot \frac{287.1}{8.5} \times \frac{8.5}{(kg/cm^2)} > 150(kg/cm^2)
\]

(2) 設計荷重時

\[
\frac{\sigma_{cu}}{\sigma_{cl}} = \frac{\sigma_{cru}}{\sigma_{crl}} + \frac{\sigma_{ceu}}{\sigma_{cel}}
\]

\[
= \frac{4.23}{9.66} \times \frac{138.9}{140(kg/cm^2)} - \frac{23.03}{2.7} \times 140(kg/cm^2) - 15(kg/cm^2)
\]

4) 破壊に対する安全度の照査

破壊抵抗曲げモーメントは次式により求める。

\[
M_u = T \times (d - 0.8x)
\]

\[
= 72.57 \times (1.379 - 0.071)
\]

\[
= 949.0 (t \cdot m)
\]

破壊作用曲げモーメントは、ねじり剛性を無視した状態で検討する。その作用曲げモーメントの大きさは、ねじり剛性を考慮して算出した値に安全を考え、ここでは10%増しとする。

破壊作用曲げモーメント

\[
1.3Md + 2.5ML = (1.3 \times 323.9 + 2.5 \times 1551) \times 1.1
\]

\[
= 890 (t \cdot m) < M_u = 949.0 (t \cdot m)
\]

\[
1.7(Md + ML) = 1.7 \times (323.9 + 1551) \times 1.1
\]

\[
= 896 (t \cdot m) < M_u = 949.0 (t \cdot m)
\]
5) 支点上の検討

支点上には斜角の影響により負の曲げモーメントが発生する。

ここでは、鈍角部に発生する最小曲げモーメント（Min = 16.401 t·m）について検討する。

応力計算は安全を考え、主桁縦断面を使用する。

(1) 荷重による曲げ応力度の計算

\[
\sigma W' = \frac{M_{\text{min}}}{Z_{uc}} \cdot \frac{Z_{uc}}{Z_{tc}}
\]

\[
= \frac{-1640100}{339649} \cdot \frac{234297}{7.0} \quad \text{kg/cm}^2
\]

(2) プレストレスの計算

\[
\sigma_{ceu} = \frac{Pe}{Ac} + \frac{Pe \cdot epc}{Z_{uc}} \cdot \frac{Z_{uc}}{Z_{tc}}
\]

\[
= \frac{376900}{9535} + \frac{376900 \times 1.28}{339649} \cdot \frac{234297}{7.0}
\]

\[
= 25.3 \quad \text{kg/cm}^2
\]

(3) 合成応力度

\[
\sigma_{cu} = -4.8 + 2.53 + 20.5 \quad \text{kg/cm}^2 > 0
\]

\[
\sigma_{ck} = 7.0 + 6.01 + 67.1 \quad \text{kg/cm}^2 < 150 \quad \text{kg/cm}^2
\]
6) せん断応力度

(1) 各荷重によるせん断力 (t)

<table>
<thead>
<tr>
<th>荷重</th>
<th>支点部</th>
<th>支間中央部</th>
</tr>
</thead>
<tbody>
<tr>
<td>主桁自重</td>
<td>27.0</td>
<td>-</td>
</tr>
<tr>
<td>場所打ち</td>
<td>6.2</td>
<td>-</td>
</tr>
<tr>
<td>横面荷重</td>
<td>9.1</td>
<td>-</td>
</tr>
<tr>
<td>活荷重</td>
<td>23.9</td>
<td>9.4</td>
</tr>
<tr>
<td>合計</td>
<td>66.2</td>
<td>9.4</td>
</tr>
</tbody>
</table>

(2) せん断応力度及び斜引張応力度の照査

計算は以下の式で行なう。

平均せん断応力度

\[\tau_m = \frac{S - Sp}{bw \times d} \]

せん断応力度

\[\tau = \frac{(S - Sp) \times 1}{bw \times 1} \]

斜引張応力度

\[\sigma_i = \frac{1}{2} \times (\sigma_c - \sqrt{\sigma_c^2 + 4 \times \tau^2}) \]

ここでは1例として、支点近傍（桁高×1/2）についてのみ検討する。

1) 終局荷重時の平均せん断応力度 （最大値 53 kg/cm²）

終局作用せん断力は、ねじり剛性を無視した状態で検討する。なお終局作用せん断力の大ささは、ねじり剛性を考慮して算出した値を基にし安全を考えて、ここでは5%増しとする

\[\begin{array}{cccccc}
S & Sp & bw & d & \tau_m \\
(t) & (t) & (cm) & (cm) & (kg/cm²) \\
115.7 & 25.5 & 4.5 & 1.4 & 1.39 \\
\end{array} \]

2) 設計荷重時の斜引張応力度 （許容値 - 10 kg/cm²）

曲げ応力度 (kg/cm²)

<table>
<thead>
<tr>
<th>全荷重</th>
<th>ブレストレス</th>
<th>合成応力度</th>
</tr>
</thead>
<tbody>
<tr>
<td>上緑下緑</td>
<td>上緑下緑</td>
<td>上緑下緑 図心位置</td>
</tr>
<tr>
<td>13.2</td>
<td>-20.4</td>
<td>18.7</td>
</tr>
<tr>
<td>77.9</td>
<td>31.9</td>
<td>57.6</td>
</tr>
<tr>
<td>42.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
斜引張応力度

\[
S - S_p \\
Q \\
\begin{array}{|c|c|}
\hline
(t) & \text{cm}^2 \\
\hline
3.79 & 189430 \\
\hline
\end{array}
\begin{array}{|c|c|}
\hline
Q \\
\text{cm}^2 \\
\hline
20212000 \\
\hline
\end{array}
\begin{array}{|c|c|}
\hline
l & \text{cm} \\
\hline
45 & 7.9 \\
\hline
\end{array}
\begin{array}{|c|c|}
\hline
bw & \text{kg/} \text{cm}^2 \\
\hline
45 & -1.4 \\
\hline
\end{array}
\begin{array}{|c|c|}
\hline
\tau & \text{kg/} \text{cm}^2 \\
\hline
5.5 & 5.5 \\
\hline
\end{array}
\begin{array}{|c|c|}
\hline
\sigma _i & \text{kg/} \text{cm}^2 \\
\hline
8.34 & 25.5 \\
\hline
\end{array}
\begin{array}{|c|c|}
\hline
8.34 & 25.5 \\
\hline
144.5 & 5.8 \\
\hline
\end{array}
\]

n) 設計荷重時の平均せん断応力度（許容値 5.5 kg/cm²）

\[
\begin{array}{|c|c|c|c|c|}
\hline
S & S_p & bw & d & \tau _m \\
(t) & (t) & (\text{cm}) & (\text{cm}) & (\text{kg/} \text{cm}^2) \\
\hline
8.34 & 25.5 & 45 & 144.5 & 5.8 \\
\hline
\end{array}
\]

7) ねじり応力度

（1）各荷重によるねじりモーメント（t・m）

荷重 支点部
横面荷重 -1.160
活荷重 -3.779
合計 -4.939

（2）ねじり応力度

\[
K_t = \frac{\sum h_i \cdot b_i^2}{3.5 \cdot b_i} \\
= \frac{2 \times (8.0 \times 2.0^2) + 15.0 \times 5.0^2}{3.5 \times 5.0} \\
= 1126.28 \text{ cm}
\]
\[\tau_1 = \frac{M_t}{Kt} \]
\[= \frac{493900}{112628} \]
\[= 4.4 \text{ kg/cm}^2 \]

（3）斜引張応力

\[\sigma_1 = \frac{1}{2} \cdot (\sigma c - \sqrt{\sigma c^2 + 4 \tau t^2}) \]
\[= \frac{1}{2} \cdot (4.2.2 - \sqrt{4.2.2^2 + 4 \times 4.4^2}) \]
\[= -0.5 \text{ kg/cm}^2 \]

せん断応力度考慮時の斜引張応力度 (kg/cm²)

\[\sigma_1 = \frac{1}{2} \cdot (\sigma c - \sqrt{\sigma c^2 + 4 (\tau + \tau t)^2}) \]
\[= \frac{1}{2} \cdot (4.2.2 - \sqrt{4.2.2^2 + 4 (7.9 + 4.4)^2}) \]
\[= -3.3 \text{ kg/cm}^2 \Rightarrow \sigma_{10} = -13 \text{ kg/cm}^2 \]
3-4. 横桁の設計

1) 端横桁

(1) 断面形状

軸力計算用上フランジ幅

\[L_1 = 5.429 \times \sin 45^\circ = 3.839 \text{m} \]

曲げ計算用上フランジ幅

有効幅 \(\lambda = \frac{6}{8} \)

\[= \frac{2.14}{8} \]

\[= 2.68 \text{cm} \]

\[L_2 = 5.5 \times \sin 45^\circ + 2.68 = 6.57 \text{cm} \]

(2) 曲げモーメント

\[M_{\text{max}} = 7.791 \text{t} \cdot \text{m} \]

\[M_{\text{min}} = -14.997 \text{t} \cdot \text{m} \]

(3) プレストレス

横縄P C鋼材として1 T19.3を用いる。その床版配置間隔は50cmとする。

導入直後の緊張力はP t=30tとする。

配置本数

軸力用 NP = 8.6本

曲げ用 NP = 2本
(4) 合成応力度

1) max 応力度の集計 (kg/cm²)

<table>
<thead>
<tr>
<th></th>
<th>けた上綱</th>
<th>けた下綱</th>
</tr>
</thead>
<tbody>
<tr>
<td>けた自重</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>場所打コンクリート</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>構面荷重</td>
<td>4.2</td>
<td>-4.8</td>
</tr>
<tr>
<td>活 荷重</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>ルストレス（導入時）</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>ルストレス（設計時）</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>導入時合成応力度</td>
<td>2.4</td>
<td>1.0</td>
</tr>
<tr>
<td>設計時合成応力度</td>
<td>2.4</td>
<td>1.0</td>
</tr>
</tbody>
</table>

2) min 応力度の集計 (kg/cm²)

<table>
<thead>
<tr>
<th></th>
<th>けた上綱</th>
<th>けた下綱</th>
</tr>
</thead>
<tbody>
<tr>
<td>けた自重</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>場所打コンクリート</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>構面荷重</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>活 荷重</td>
<td>-8.0</td>
<td>9.3</td>
</tr>
<tr>
<td>ルストレス（導入時）</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>ルストレス（設計時）</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>導入時合成応力度</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>設計時合成応力度</td>
<td>1.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

(5) せん断応力度

1) 作用せん断力

\[S_{\text{max}} = 7107 \text{t} \]

2) 平均せん断応力度

設計荷重時

\[\tau = \frac{S}{b \cdot d} = \frac{7107}{38.9 \times 1.45} = 1.3 \text{ kg/cm}^2 \]

3) 斜引張応力度

\[\tau = \frac{S \cdot Q}{b \cdot l} = \frac{7107 \times 236200}{38.9 \times 24530000} = 1.8 \text{ kg/cm}^2 \]
\[
\sigma_1 = \frac{1}{2} (\sigma_c - \sqrt{\sigma_c^2 + 4\tau^2}) \\
\sigma = \frac{1}{2} (9.2 - \sqrt{9.2^2 + 4 \times 1.8}) \\
= -0.2 \text{ kg/c㎡} > -8 \text{ kg/c㎡}
\]

(6) ねじり応力度

i) ねじりモーメント \(M_t = 8.209 \text{ t·m} \)

![Diagram of a structural member with dimensions 389 mm x 600 mm and 200 mm x 1500 mm]

ii) ねじり応力度

\[
K_t = \frac{15.0 \times 38.9^2 + 60 \times 20^2}{3.5 \times 38.9}
\]

\[= 68380 \text{ cm}^2\]

\[
\tau_t = \frac{820900}{68380} = 12 \text{ kg/c㎡}
\]

iii) 斜引張応力度（せん断応力考慮時）

\[
\sigma_1 = \frac{1}{2} (9.2 - \sqrt{9.2^2 + 4 \times (1.8 + 12.0)}) \\
= -7.2 \text{ kg/c㎡} > \sigma_{1a} = -11 \text{ kg/c㎡}
\]

2) 中間横桁

(1) 断面形状

![Diagram of a horizontal structural member with dimensions 3226 mm (7086) mm x 200 mm]
曲げ計算用フランジ幅
有効幅 \(\lambda = \frac{n-1}{6} (a_b + b_w) \)

\(= \frac{4-1}{6} \times 302.6 \)

\(= 151.3 \text{ (cm)} \)

\(l = 2 \times 151.3 + 20 = 322.6 \text{ cm} \)

(2) 曲げモーメント

\(M_{\text{max}} = 9.495 \text{ t} \cdot \text{m} \)

\(M_{\text{min}} = -25.112 \text{ t} \cdot \text{m} \)

(3) PC鋼材配置本数

軸力用 \(N_P = 15.2 \text{ 本} \)

曲げ用 \(N_P = 7.4 \text{ 本} \)

(4) 合成応力度

1) \(\text{max} \) 応力度の集計 (kg/cm²)

<table>
<thead>
<tr>
<th>固定荷重</th>
<th>けた上線</th>
<th>けた下線</th>
</tr>
</thead>
<tbody>
<tr>
<td>自重</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>崖所打コンクリート</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>横面荷重</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>活荷重</td>
<td>2.7</td>
<td>-1.05</td>
</tr>
<tr>
<td>プレストレス (導入時)</td>
<td>28.8</td>
<td>24.8</td>
</tr>
<tr>
<td>プレストレス (設計時)</td>
<td>25.4</td>
<td>21.9</td>
</tr>
<tr>
<td>導入時合成応力度</td>
<td>28.9</td>
<td>24.8</td>
</tr>
<tr>
<td>設計荷重作用時合成応力度</td>
<td>28.1</td>
<td>11.4</td>
</tr>
</tbody>
</table>

2) \(\text{min} \) 応力度の集計 (kg/cm²)

<table>
<thead>
<tr>
<th>固定荷重</th>
<th>けた上線</th>
<th>けた下線</th>
</tr>
</thead>
<tbody>
<tr>
<td>自重</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>崖所打コンクリート</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>横面荷重</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>活荷重</td>
<td>-7.1</td>
<td>2.78</td>
</tr>
<tr>
<td>プレストレス (導入時)</td>
<td>28.9</td>
<td>24.8</td>
</tr>
<tr>
<td>プレストレス (設計時)</td>
<td>25.4</td>
<td>21.9</td>
</tr>
<tr>
<td>導入時合成応力度</td>
<td>28.9</td>
<td>24.8</td>
</tr>
<tr>
<td>設計荷重作用時合成応力度</td>
<td>18.3</td>
<td>4.86</td>
</tr>
</tbody>
</table>

(5) せん断応力度

4) 作用せん断力

\(S_{\text{max}} = 9.141 \text{ t} \)
u) 平均せん断応力度

設計荷重時

\[\tau_m = \frac{S}{b \cdot d} \]

\[= \frac{9141}{20 \times 125} \]

\[= 3.7 \text{ kg/cm}^2 \quad < \quad \tau_{wa} = 4.5 \text{ kg/cm}^2 \]

h) 斜引張応力度

\[\tau = \frac{S \cdot Q}{b \cdot l} \]

\[= \frac{9141 \times 123900}{20 \times 10740000} \]

\[= 5.3 \text{ kg/cm}^2 \]

\[\sigma_1 = \frac{1}{2} \cdot (24.9 - \sqrt{24.9^2 + 4 \times 5.3^2}) \]

\[= -1.1 \text{ kg/cm}^2 \quad > \sigma_{ia} = -8 \text{ kg/cm}^2 \]

(6) ねじり応力度

i) ねじりモーメント \[Mt = 3790 \text{ t.m} \]

\[\text{v) ねじり応力度} \]

\[K_t = \frac{140 \times 20 + 110 \times 20}{3.5 \times 20} \]

\[= 28570 \text{ cm}^2 \]

\[\tau_t = \frac{3790000}{28570} = 13.3 \text{ kg/cm}^2 \]
n) 斜引張応力度（せん断応力考慮時）

\[
\sigma_1 = \frac{1}{2} \left(24.9 - \sqrt{24.9^2 + 4 \times (5.3 + 1.3)^2} \right)
\]

\[
= -9.9 \text{ kg/cm}^2 \quad \sigma_{1a} = -11 \text{ kg/cm}^2
\]
5-4 ポートンジョンの例 (その3)
資料1 構造解析例一覧表

<table>
<thead>
<tr>
<th>名称</th>
<th>形式</th>
<th>幅員</th>
<th>斜角</th>
<th>ねじり剛度</th>
<th>パネ定数</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-7W-A1</td>
<td>ポストテンション</td>
<td>7.0</td>
<td>9.0°</td>
<td>〇</td>
<td>1000 t/cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-7W-A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-7W-A3</td>
<td></td>
<td></td>
<td></td>
<td>〇</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-7W-B1</td>
<td></td>
<td></td>
<td>5.0°</td>
<td>〇</td>
<td>1000 t/cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-7W-B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-7W-B3</td>
<td></td>
<td></td>
<td></td>
<td>〇</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-7W-C1</td>
<td></td>
<td></td>
<td>4.5°</td>
<td>〇</td>
<td>1000 t/cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-7W-C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-7W-C3</td>
<td></td>
<td></td>
<td></td>
<td>〇</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-11W-B1</td>
<td></td>
<td>11.0</td>
<td>5.0°</td>
<td>〇</td>
<td>1000 t/cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-11W-B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-11W-B3</td>
<td></td>
<td></td>
<td></td>
<td>〇</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-11W-C1</td>
<td></td>
<td></td>
<td>4.5°</td>
<td>〇</td>
<td>1000 t/cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-11W-C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS-11W-C3</td>
<td></td>
<td></td>
<td></td>
<td>〇</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

但し、ポストテンション桁：支間 30m

添字1: ねじり剛度考慮 パネ定数考慮 A: 90度
添字2: ねじり剛度無視 パネ定数考慮 B: 50度
添字3: ねじり剛度考慮 パネ定数無視(∞) C: 45度
添字4: ねじり剛度無視 パネ定数無視(∞)

POS-7W

POS-11W

31
<table>
<thead>
<tr>
<th>名称</th>
<th>形式</th>
<th>幅員</th>
<th>斜角</th>
<th>ねじり剛度</th>
<th>パネ定数</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-7W-B1</td>
<td>プレテンション</td>
<td>7.0</td>
<td>50°</td>
<td>〇</td>
<td>(F)600, (M)300t/cm</td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-B2</td>
<td>Ⅱ</td>
<td>Ⅱ</td>
<td>Ⅱ</td>
<td>〇</td>
<td>Ⅱ, Ⅱ</td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-B3</td>
<td>Ⅱ</td>
<td>Ⅱ</td>
<td>〇</td>
<td>〇</td>
<td>〇, 〇</td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-C1</td>
<td>Ⅱ</td>
<td>45°</td>
<td>〇</td>
<td>600, 300t/cm</td>
<td></td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-C2</td>
<td>Ⅱ</td>
<td>〇</td>
<td>Ⅱ</td>
<td>〇</td>
<td></td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-C3</td>
<td>Ⅱ</td>
<td>〇</td>
<td>〇</td>
<td>〇, 〇</td>
<td></td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-C4</td>
<td>Ⅱ</td>
<td>〇</td>
<td>〇</td>
<td>〇, 〇</td>
<td></td>
</tr>
<tr>
<td>Ⅱ-11W-B1</td>
<td>1.1.0</td>
<td>50°</td>
<td>〇</td>
<td>600, 300t/cm</td>
<td></td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-B2</td>
<td>Ⅱ</td>
<td>〇</td>
<td>Ⅱ</td>
<td>〇</td>
<td></td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-B3</td>
<td>Ⅱ</td>
<td>〇</td>
<td>〇</td>
<td>〇, 〇</td>
<td></td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-C1</td>
<td>45°</td>
<td>〇</td>
<td>600, 300t/cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-C2</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅱ-Ⅱ-C3</td>
<td>〇</td>
<td>〇</td>
<td>〇, 〇</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

但し、プレテンションT桁：支間20m

(F) ：固定支承
(M) ：可動支承

添字1 ：ねじり剛度考慮 パネ定数考慮 A：90度
添字2 ：ねじり剛度無視 パネ定数考慮 B：50度
添字3 ：ねじり剛度考慮 パネ定数無視 C：45度
添字4 ：ねじり剛度無視 パネ定数無視

PRE-7W
PRE-11W
図-1 曲げモーメントとパネ定数の関係

図-2 曲げモーメントと傾角の関係
図－3 曲げモーメントとパネ定数の関係

図－4 曲げモーメントと斜角の関係
図-5 せん断力とパネ定数の関係

図-6 せん断力と斜角の関係
図-7 せん断力とパネ定数の関係

図-8 せん断力と斜角の関係
図-9 ねじりモーメントとパネ定数の関係
図-10 ねじりモーメントと斜角の関係
図-11ねじリモーメントとパネ定数の関係

図-12ねじリモーメントと斜角の関係
図-13 反力とパネ定数の関係
図-14 反力と斜角の関係
図-15 反力とパネ定数の関係

図-16 反力と斜角の関係
<table>
<thead>
<tr>
<th>項目</th>
<th>POS-7W-A1</th>
<th>POS-7W-A2</th>
<th>POS-7W-A3</th>
<th>POS-7W-B1</th>
<th>POS-7W-B2</th>
<th>POS-7W-B3</th>
<th>POS-7W-C1</th>
<th>POS-7W-C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>頭部</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>45°</td>
<td>45°</td>
</tr>
<tr>
<td>転倒</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ねじれ</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>パネ定数(1/ cm)</td>
<td>1000</td>
<td>1000</td>
<td>=</td>
<td>1000</td>
<td>1000</td>
<td>=</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

速度重	百分率	239.30	239.30	239.30	243.06	243.06	243.06	244.15	244.15					
前倒	81.99	82.19	82.04	80.74	81.77	80.05	79.00	81.31						
後倒	156.73	160.09	156.73	155.68	160.52	155.68	155.09	160.73						
侧倒	0	-0.07	-0.08	-0.14	-0.14	0	-0.16	0.15						
台最も	100.0%	478.52	100.0%	462.18	100.0%	478.67	100.0%	480.35	100.0%	479.38	100.1%	479.14	101.0%	468.19
棚小	321.89	322.02	321.87	322.65	324.69	323.71	323.89	326.31						
せん断力														
前倒	32.78	32.78	32.78	32.09	33.09	33.09	33.21	33.21						
侧倒	23.86	23.97	23.85	23.60	23.60	23.52	23.50	23.99						
台最も	100.0%	66.86	100.0%	66.09	100.0%	65.85	100.6%	66.25	100.9%	66.46	100.6%	66.23	100.9%	66.46
棚小	41.86	41.99	41.87	42.22	42.34	42.20	42.17	42.24						

ねじれ力														
前倒	-0.06	-0.06	-1.06	-1.08	-0.97	-1.15	-1.08	-						
後倒	2.68	2.68	2.68	2.68	2.68	2.68	2.68							
台最も	100.0%	-2.71	0%	-2.71	165.4%	-4.59	0%	-	172.0%	-4.66	181.3%	-4.93	0%	-
棚小	46.53	47.03	47.03	46.93	46.23	46.20	47.03	47.20						

反力														
前倒	36.52	36.52	36.16	36.16	36.16	36.16	37.35	37.35						
侧倒	23.79	21.23	21.23	22.37	22.25	24.32	22.70	22.50						
台最も	100.0%	69.45	98.3%	68.26	98.7%	86.55	98.7%	86.96	101.8%	70.71	100.7%	89.51	100.0%	69.82
棚小	45.53	47.03	47.03	46.93	46.23	46.20	47.03	47.20						

(1) 学習 - 答教解析結果 (その1)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>斜角</td>
<td>45°</td>
<td>45°</td>
<td>5°</td>
<td>5°</td>
<td>5°</td>
<td>45°</td>
<td>45°</td>
<td>45°</td>
</tr>
<tr>
<td>由げ開度</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
</tr>
<tr>
<td>ねじり開度</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
<td>オ</td>
</tr>
<tr>
<td>バネ定数(1/㎝)</td>
<td>ド</td>
<td>ド</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>ド</td>
</tr>
<tr>
<td>百分率</td>
<td>244.15</td>
<td>244.15</td>
<td>239.28</td>
<td>239.28</td>
<td>239.28</td>
<td>240.39</td>
<td>240.39</td>
<td>240.39</td>
</tr>
<tr>
<td>前回増高変位 (%)</td>
<td>79.79</td>
<td>81.22</td>
<td>70.44</td>
<td>71.35</td>
<td>70.40</td>
<td>69.78</td>
<td>71.01</td>
<td>69.73</td>
</tr>
<tr>
<td>後回増高変位 (%)</td>
<td>155.98</td>
<td>160.75</td>
<td>153.56</td>
<td>162.92</td>
<td>153.50</td>
<td>152.79</td>
<td>163.10</td>
<td>152.72</td>
</tr>
<tr>
<td>活動量最大</td>
<td>0</td>
<td>0</td>
<td>-0.25</td>
<td>-4.00</td>
<td>-0.19</td>
<td>-0.24</td>
<td>-4.34</td>
<td>-0.13</td>
</tr>
<tr>
<td>活動量最小</td>
<td>0</td>
<td>0</td>
<td>-0.25</td>
<td>-4.00</td>
<td>-0.19</td>
<td>-0.24</td>
<td>-4.34</td>
<td>-0.13</td>
</tr>
<tr>
<td>合計最大</td>
<td>100.1%</td>
<td>479.02</td>
<td>101.6%</td>
<td>486.11</td>
<td>96.8%</td>
<td>463.25</td>
<td>98.9%</td>
<td>473.92</td>
</tr>
<tr>
<td>合計最小</td>
<td>323.94</td>
<td>325.37</td>
<td>309.45</td>
<td>309.51</td>
<td>309.47</td>
<td>309.90</td>
<td>307.23</td>
<td>309.95</td>
</tr>
<tr>
<td>セン断力 (1)</td>
<td>33.23</td>
<td>33.21</td>
<td>32.60</td>
<td>32.60</td>
<td>32.60</td>
<td>32.71</td>
<td>32.71</td>
<td>32.71</td>
</tr>
<tr>
<td>有効荷重 (%)</td>
<td>9.11</td>
<td>9.25</td>
<td>9.15</td>
<td>8.25</td>
<td>8.63</td>
<td>8.51</td>
<td>8.14</td>
<td>8.50</td>
</tr>
<tr>
<td>活動量最大</td>
<td>23.92</td>
<td>24.01</td>
<td>23.34</td>
<td>23.71</td>
<td>22.87</td>
<td>22.92</td>
<td>23.72</td>
<td>22.94</td>
</tr>
<tr>
<td>活動量最小</td>
<td>-0.13</td>
<td>-0.13</td>
<td>-0.18</td>
<td>-0.46</td>
<td>0</td>
<td>0.07</td>
<td>-0.46</td>
<td>0</td>
</tr>
<tr>
<td>合計最大</td>
<td>100.6%</td>
<td>66.34</td>
<td>100.9%</td>
<td>66.47</td>
<td>97.3%</td>
<td>64.09</td>
<td>98.0%</td>
<td>64.10</td>
</tr>
<tr>
<td>合計最小</td>
<td>42.18</td>
<td>42.32</td>
<td>40.57</td>
<td>40.39</td>
<td>41.23</td>
<td>41.15</td>
<td>40.39</td>
<td>41.21</td>
</tr>
<tr>
<td>メンス荷重 (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-1.16</td>
<td>-1.16</td>
<td>-1.37</td>
<td>-1.38</td>
</tr>
<tr>
<td>活動量最大</td>
<td>2.06</td>
<td>2.27</td>
<td>-</td>
<td>-</td>
<td>-3.58</td>
<td>-3.58</td>
<td>-3.70</td>
<td>-3.70</td>
</tr>
<tr>
<td>活動量最小</td>
<td>-3.78</td>
<td>-3.58</td>
<td>-</td>
<td>-</td>
<td>-3.58</td>
<td>-3.70</td>
<td>-3.70</td>
<td>-3.70</td>
</tr>
<tr>
<td>合計最大</td>
<td>182.3%</td>
<td>-4.94</td>
<td>0%</td>
<td>-174.2%</td>
<td>-4.72</td>
<td>-174.9%</td>
<td>-7.46</td>
<td>0%</td>
</tr>
<tr>
<td>合計最小</td>
<td>37.35</td>
<td>37.35</td>
<td>35.55</td>
<td>35.55</td>
<td>35.55</td>
<td>35.97</td>
<td>35.97</td>
<td>35.97</td>
</tr>
<tr>
<td>活動量最大</td>
<td>24.40</td>
<td>24.01</td>
<td>21.97</td>
<td>22.08</td>
<td>24.27</td>
<td>22.15</td>
<td>22.55</td>
<td>24.42</td>
</tr>
<tr>
<td>活動量最小</td>
<td>-0.15</td>
<td>0.13</td>
<td>-0.56</td>
<td>-0.59</td>
<td>0.86</td>
<td>0.56</td>
<td>0.59</td>
<td>1.06</td>
</tr>
<tr>
<td>合計最大</td>
<td>100.8%</td>
<td>72.10</td>
<td>101.7%</td>
<td>70.61</td>
<td>98.4%</td>
<td>68.96</td>
<td>98.9%</td>
<td>68.98</td>
</tr>
<tr>
<td>合計最小</td>
<td>47.56</td>
<td>48.47</td>
<td>44.41</td>
<td>44.25</td>
<td>43.86</td>
<td>44.88</td>
<td>44.88</td>
<td>44.57</td>
</tr>
<tr>
<td>(最小)</td>
<td>(42.45)</td>
<td>(43.94)</td>
<td>(30.70)</td>
<td>(40.34)</td>
<td>(35.65)</td>
<td>(40.19)</td>
<td>(40.32)</td>
<td>(40.42)</td>
</tr>
<tr>
<td>元角</td>
<td>PRE-7W-B1</td>
<td>PRE-7W-B2</td>
<td>PRE-7W-B3</td>
<td>PRE-7W-C1</td>
<td>PRE-7W-C2</td>
<td>PRE-7W-C3</td>
<td>PRE-7W-C4</td>
<td>PRE-11W-B1</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>5' 0"</td>
<td>5' 0"</td>
<td>5' 0"</td>
<td>4' 5"</td>
<td>4' 5"</td>
<td>4' 5"</td>
<td>4' 5"</td>
<td>5' 0"</td>
<td></td>
</tr>
<tr>
<td>ふれている角度</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>ふじりり角度</td>
<td>O</td>
<td>-</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>-</td>
<td>O</td>
</tr>
<tr>
<td>ベキ定数(t/ce)</td>
<td>(F) 600. (W) 300</td>
<td>600 . 300</td>
<td>- -</td>
<td>(F) 600. (W) 300</td>
<td>600 . 300</td>
<td>- -</td>
<td>- -</td>
<td>600 . 300</td>
</tr>
<tr>
<td>合計</td>
<td>100.0%</td>
<td>113.4%</td>
<td>102.9%</td>
<td>116.65%</td>
<td>100.0%</td>
<td>113.38%</td>
<td>100.5%</td>
<td>113.98%</td>
</tr>
<tr>
<td>計</td>
<td>小</td>
<td>67.45</td>
<td>65.76</td>
<td>65.51</td>
<td>67.30</td>
<td>66.68</td>
<td>66.26</td>
<td>66.78</td>
</tr>
<tr>
<td>レギュレータ</td>
<td>大</td>
<td>10.12</td>
<td>9.13</td>
<td>9.13</td>
<td>2.17</td>
<td>5.17</td>
<td>5.17</td>
<td>8.17</td>
</tr>
<tr>
<td>合計</td>
<td>100.0%</td>
<td>102.2%</td>
<td>100.2%</td>
<td>102.5%</td>
<td>100.0%</td>
<td>102.5%</td>
<td>100.0%</td>
<td>102.5%</td>
</tr>
<tr>
<td>計</td>
<td>小</td>
<td>12.17</td>
<td>12.13</td>
<td>12.20</td>
<td>11.52</td>
<td>12.15</td>
<td>12.22</td>
<td>100.3%</td>
</tr>
<tr>
<td>レギュレータ</td>
<td>大</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>合計</td>
<td>100.0%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>計</td>
<td>小</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>レギュレータ</td>
<td>大</td>
<td>10.08</td>
<td>10.08</td>
<td>10.08</td>
<td>10.12</td>
<td>10.12</td>
<td>10.12</td>
<td>10.02</td>
</tr>
<tr>
<td>合計</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

3-3断面力（その3）
3-4 断面力表（その4）

<table>
<thead>
<tr>
<th></th>
<th>PRE-1W-B2</th>
<th>PRE-1W-B3</th>
<th>PRE-1W-C1</th>
<th>PRE-1W-C2</th>
<th>PRE-1W-C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°</td>
<td>45°</td>
<td>45°</td>
<td>45°</td>
<td>45°</td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定角</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比例抵抗</td>
<td>48.73</td>
<td>48.73</td>
<td>48.73</td>
<td>48.73</td>
<td>48.73</td>
</tr>
<tr>
<td>鉄筋張力</td>
<td>50.12</td>
<td>50.12</td>
<td>50.12</td>
<td>50.12</td>
<td>50.12</td>
</tr>
<tr>
<td>計算小</td>
<td>11.48</td>
<td>11.48</td>
<td>11.48</td>
<td>11.48</td>
<td>11.48</td>
</tr>
<tr>
<td>計算大</td>
<td>11.48</td>
<td>11.48</td>
<td>11.48</td>
<td>11.48</td>
<td>11.48</td>
</tr>
</tbody>
</table>

補記：PRE-1W-C1のデータは平均的な値です。
<table>
<thead>
<tr>
<th>No.</th>
<th>項目名</th>
<th>著者名</th>
<th>出典</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>PC斜角桁の設計について</td>
<td>福田敏之</td>
<td>1968年 Vol. 10, No. 5</td>
<td>斜角桁の構造解析の結果とねじりヒールの軸受点およびねじり補強方法における曲げヒール、ねじりヒールと斜角との関係についての研究報告</td>
</tr>
<tr>
<td>②</td>
<td>カーボンファイバー技術協会 第8回研究発表会講演要旨</td>
<td>宮田高行</td>
<td>1968年 第8回</td>
<td>山陽新幹線に使用する斜角桁について桁のひび割れの分かまり、荷重の方向、荷重値の負荷方法、ねじりヒールの配置についての研究報告</td>
</tr>
<tr>
<td>③</td>
<td>FEMによるPC斜角桁模の設計と実験試験</td>
<td>倉田 道行</td>
<td>1982年 02-11</td>
<td>正面・側面および斜面に特徴を持つ鉄筋コンクリート床版の完成後の支承反力、鉄筋応力および床版の変形量の測定を行い設計値との対比検討を行った</td>
</tr>
<tr>
<td>④</td>
<td>「ねじりの影響を受ける道路構の上部構造形式に関する検討」</td>
<td>重松成義</td>
<td>1983年</td>
<td>直線及び斜線の構造におけるねじりの影響について実験研究および数値解析を行い、今後のT、形構の厚さの設計におけるねじりヒールの取扱いについて検討を行い、これに基づく設計法の提案を行った</td>
</tr>
<tr>
<td>⑤</td>
<td>レジンコンクリート構造のコンクリート構造</td>
<td>横道英雄</td>
<td>1983年</td>
<td>斜め単純床版構造について斜面角20°～70°程度の単純床版構造の構造解析、荷重ヒールの算定方法が20°の場合の支承形式の影響、斜面板構造の耐荷力、斜面床版構造の頑構造の配置方法等の検討上の問題について。</td>
</tr>
<tr>
<td>⑥</td>
<td>斜め荷重合成桁</td>
<td>服部 明</td>
<td>1986年 Vol. 2, No. 11</td>
<td>斜面30°の鋼製合成桁設計の設計の裏付けとして模型実験を行い、斜床版の応力を明確にした</td>
</tr>
<tr>
<td>⑦</td>
<td>LIVE LOAD DISTRIBUTION IN SKELED PRESTRESSED CONCRETE 1-BEAM AND SPANDREL BOX-BEAM BRIDGES</td>
<td>DeCASTRO L S, KOSTEM C M, NERZ D R, HORTIN D A</td>
<td>U.S.A Lehah Uni Pennsylvania</td>
<td>走行荷重が静的に作用した場合の設計ヒールおよび側面方向の斜面の影響をカーボンファイバーの1型枠および斜面方向に作用した斜面の影響を応答解をもとに検討した。結果は25～128倍荷重を考慮し、数値計算を行った橋が斜面20°以上の斜面の影響を考慮した設計の検討を行った。</td>
</tr>
<tr>
<td>No.</td>
<td>項目名</td>
<td>著者名</td>
<td>出典</td>
<td>内容</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>③</td>
<td>Vorspannung fur Biegung, Querkraft und Torsion in ausmitting belasteten, gekrummten und schief gelegerten Stabtragwerken. (偏心荷重された曲線あるいは斜め荷重の構造物における曲げ、せん断力、およびねじりに対する内力スパン)</td>
<td>BACHMANN, H</td>
<td>Beton und Stahlbetonbau, 1982年 Vol. 77, No. 8</td>
<td>前報同誌77(7)('82)に引き続いて偏心載荷された曲線ばかりおよび斜め荷重に生ずる各種応力に対するPC鋼材配置の設計のための簡単で能率的な方法を提案した。本報は実際の例として結果を各項目について示した。ここで開発したのは一般的な方法であり、計算例を示した。この方法の特色は最初に曲げに対してのみ設計してから外力荷重によるねじりに対して結びつけるようにPC鋼材を適當に配置させるということである。このようにする場合にはPC鋼材についての余分な出費を必要とせずにおねじりを部分的にまたは完全に消去することが可能である。</td>
</tr>
<tr>
<td>③</td>
<td>Construction of minor reinforced concrete road bridges. (小さい鉄筋コンクリート道路橋の建設)</td>
<td>VENKATESULU, G SASTRY, M V</td>
<td>Indian Concrr. J, 1982年 Vol. 56, No. 12</td>
<td>地方における道路橋は一般に当初建設費と維持費の点からRCまたはPC構造が用いられる。.Ministry of Shipping and Transport の道路橋標準設計が出版されており、これは十分な設計陣を持たない建設業者に対して、小さい橋の技術的ハツが与えるのに役立っている。25mまでの小支間構の建設について現場技術者と地方業者が特に注意すべき事項として、上部構造の建設中の注意事項、斜めの付け配筋と支承、摩擦面、橋台と端壁との間の伸縮装置、モルツ支承、膨張目地などを挙げて解説する。</td>
</tr>
<tr>
<td>⑥</td>
<td>Lateral live load distribution in prestressed concrete highway bridges.</td>
<td>KOSTEN.C N</td>
<td>NATO ASI Ser E, 1984年 No. 74</td>
<td>直線および斜線のフライヒュッケン型および箱型断面を有する単線間の道路橋を対象とし、その荷重は仮荷重に影響を与える方法の設計の方法に関する解体の結果を要約した。すなわち、過去の荷重の設計においては分配数を仮設の仮想的仮定の結果が示されたが現在ならばに解析的研究によると、この簡素化した仮想的仮定数を構架の予備設計段階では良好な結果を与えるが、最終設計においてはかなり資料を用いない面があり、著者の以前からの研究より提案されている修正分配数を用いるべきであるとしている。</td>
</tr>
<tr>
<td>No</td>
<td>項目</td>
<td>名称</td>
<td>著者名</td>
<td>出典</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>⑨</td>
<td>Development of design criteria for simply supported skew slab-and-girder bridges.</td>
<td>MARK, H.J</td>
<td>KHACHATURIAN, N</td>
<td>コンチナリー・イリノイ大学 Urbana-Champaign, IL</td>
</tr>
<tr>
<td>支部</td>
<td>事務局</td>
<td>住所</td>
<td>TEL</td>
<td>FAX</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>北海道支部</td>
<td>札幌市中央区北1条西6-2（安田火災北海道ビル）(〒060)</td>
<td>札幌支店内</td>
<td>(011) 231-7844</td>
<td>(011) 222-5526</td>
</tr>
<tr>
<td>東北支部</td>
<td>仙台市青葉区一番町2-1-1（仙台銀行ビル）(〒980)</td>
<td>仙台支店内</td>
<td>(022) 266-8377</td>
<td>(022) 223-5617</td>
</tr>
<tr>
<td>関東支部</td>
<td>東京都渋谷区代々木3-25-3(大東京火災新宿ビル)(〒151)</td>
<td>日本鋼鉄コンクリート株式会社 東京支店内</td>
<td>(03) 374-3308</td>
<td>(03) 5371-0997</td>
</tr>
<tr>
<td>北陸支部</td>
<td>新潟市東大通1-2-23（北陸ビル）(〒950)</td>
<td>新潟営業所内</td>
<td>(025) 247-3791</td>
<td>(025) 243-1488</td>
</tr>
<tr>
<td>中部支部</td>
<td>名古屋市中村區名駅3-25-9（堀内ビル）(〒450)</td>
<td>名古屋営業所内</td>
<td>(052) 541-2528</td>
<td>(052) 561-2807</td>
</tr>
<tr>
<td>関西支部</td>
<td>大阪市西区西地町1-3-15（大阪建大ビル）(〒550)</td>
<td>ピーシー橋梁株式会社内</td>
<td>(06) 536-6551</td>
<td>(06) 533-3817</td>
</tr>
<tr>
<td>中国支部</td>
<td>広島市東区光町2-6-31（〒732)</td>
<td>桃東工業株式会社内</td>
<td>(082) 262-0474</td>
<td>(082) 264-3728</td>
</tr>
<tr>
<td>四国支部</td>
<td>高松市中新町2-9（富士ビル）(〒760)</td>
<td>高松営業所内</td>
<td>(0878) 31-1260</td>
<td>(0878) 61-7893</td>
</tr>
<tr>
<td>九州支部</td>
<td>福岡市中央区天神2-12-1（天神ビル）(〒810)</td>
<td>富士ピー・エス・コンクリート株式会社内</td>
<td>(092) 751-0456</td>
<td>(092) 721-3465</td>
</tr>
</tbody>
</table>
編集者

小沢 恒雄
川内 康雄
坂井 逸朗
田村 章

（五十音順）

連絡先

法人格

プレストレスト・コンクリート建設業協会

関西支部
大阪市西区西本町1-3-15（大阪建大ビル）〒550
事務局
ビーシー橋梁株式会社内

TEL (06) 536-6551
FAX (06) 533-3817